截图1这几张截图来自《漫话数学》,作者是张景中和任宏硕。截图2数学推理方法有多种,结构法是其中之一,也是人类最早掌握的数学方法。
使用结构法举行数学推理,需要充实发挥我们的想象力和缔造力。截图3下面看几个详细的实例。下图是小学生的数学暑假作业局部截图。
求阴影部门的面积小学五年级数学下学期的作业(王朝霞的卷子):如图,求阴影部门S的面积是几多?【谜底剖析】科学始于视察,爱因斯坦说:“你能不能视察眼前的现象,取决于你运用什么样的理论。理论决议着你到底能够视察到什么。”由理论指导视察实践,是理论决议我们能够视察到什么。请看题图,你视察到图中存在怎样的数量关系?能否读懂、提取图中的隐含信息?要找到解题的钥匙,需要用正确的理论指导视察才有可能。
实际上,只需要用我们学过的知识点,考察题目所给出的图形,我们就能获得解题所需要的信息和提示。这个知识点也很平凡,它泉源于我们早就知道的三角形面积公式——三角形的面积即是底乘以高的一半。明白了这个公式,就引出了这个知识点:等底等高的三角形面积相等。
继续推理,可以获得命题等高三角形的面积比即是它们对应底边的比,其中等底等高三角形面积相等。还能获得命题等底三角形的面积比即是它们对应高的比,其中等底等高三角形面积相等。有了正确的理论,再视察题图,我们就能够发现以下事实:1.长方形面积=白色部门面积+阴影部门面积;2.阴影部门面积=白色部门面积=长方形面积的一半;3.白色部门被分为上方3部门和下方3部门,上方3部门面积=下方3部门面积;从上面3点事实出发进一步推理,我们发现:4.阴影10+阴影30=阴影20+阴影S;于是凭据这个等量关系结构出相识题的方程式:10+30=20+S,所以,所求阴影面积为20平方厘米。这道题考察同学们对相关知识点的掌握情况,是一道颇具难度的精彩题目,谢谢出题老师。
顺便说一下,第2题小学生的解答是错误的。这题目很简朴,已知旅程,已知快车和慢车的速度和,又能够知道快车的速度,自然就知道了慢车的速度。通过题目条件能够算出慢车未完成的旅程,盘算需要几多时间犹如探囊取物,易如反掌。
我们再来看看小学五年级数学下学期的作业(王朝霞的卷子)的一道题:一次数学考试满分是100分。6位同学得分各不相同,且都为自然数,他们的平均分为91分,其中得分最少的同学得了80分。
那么排第三名的同学至少得几多分?谜底剖析:由题目所给条件可知,6位同学的总分是6×91=546分,去掉最低分80分,剩下5名同学总分是546-80=466分。5名同学的平均分是466÷5=93.2分。
第三名的最低分数与两个条件有关:1.第三名与后两名的差距越小,第三名的分数就越低;2.第一名和第二名的分数越高,第三名的分数就越低。所以,根据这两种情况思量,就能算出第三名的结果至少是几多分。
第一名和第二名的可能最好结果是199分,这是压低第三名结果的一个条件。那么第三名到第五名的3位同学总分就是466-199=267分。现在思量第三名与后两名差距最小的情况,那就是三人的分数是一连自然数。
只有一种情况能够把第三名分数拉到最低,即88+89+90=267分。所以谜底就是第三名至少考了90分。总结:让第三名可能的分数最低需要满足的充实须要条件是以下两个:1.让前两名考出理论最高分,压低第三名的分数;2.让后两名分数最大水平靠近第三名,让差距最小化。说到了充要条件,林群院士在《微积分减肥快跑》一书中有个片段很有趣,分享如下:这里反例成为新理论的出发点!这就是为什么北京大学张恭庆说:数学的一个重要训练是会找反例。
另有一个充要条件的训练。它们成为职业数学家的条件反射!听说鲁迅的《秋夜》就写得须要且充实:“在我的后园,可以瞥见墙外有两株树,一株是枣树,另有一株也是枣树。”——摘自(《微积分减肥快跑》page 52,林群 著,科学普及出书社,2011年)最后,分享一张图片,与读者共勉。
各地期末试卷精选(2020成都专版)小学五年级数学。
本文关键词:亚搏手机版app下载,数学,推理,方法,之,结构,法,—,百闻不如一见
本文来源:亚搏手机版app下载-www.dl-shj.com